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1 Introduction

A wide range of highly granular calorimeter prototypes has been developed by the CALICE col-
laboration to test the particle flow concept as well as new technologies for future particle physics
experiments. The particle flow approach (PFA) was proposed in order to achieve the jet energy
resolution required for future linear collider experiments [1–3]. Recently, a PFA was successfully
implemented for jet energy reconstruction in the CMS detector [4, 5] and a further increase of gran-
ularity is now considered an option for the CMS calorimeter upgrade in view of the next phase of
the LHC, also called High-Luminosity LHC. Besides testing the PFA, highly granular electromag-
netic and hadron calorimeter prototypes provide an opportunity to test Monte Carlo models with
unprecedented detail. While the development of electromagnetic showers is quite well understood
and reproduced by simulations [6], predictions of hadronic shower development are not so precise
and there are no hadronic models which demonstrate agreement with data for all types of hadrons
over a wide energy range [7].

Hadronic showers, produced in a calorimeter after a deep inelastic interaction of an incident
hadron with a nucleus, are characterised by a relatively narrow core from the electromagnetic com-
ponent surrounded by an extended halo. The core is usually formed by electromagnetic cascades

– 1 –
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initiated by photons from π0 decays, while charged mesons and baryons dominate in the radial
halo and longitudinal tail of the shower. The complicated structure of hadronic showers results
in significant fluctuations of their longitudinal and radial sizes as well as the calorimeter energy
response [8].

Besides fluctuations of the response, differences in the average response for different types of
hadrons have been predicted [9] and observed experimentally for pions and protons. The response
for pions is ∼10% larger than that for protons in the energy range 200 to 375 GeV [10]. Such
behaviour was confirmed for lower energies (20 to 180 GeV) with the Fe-Scintillator ATLAS Tile
calorimeter [11] for which the response to pions was ∼4% higher than the response to protons of
the same initial energy.

The CALICE scintillator-steel analogue hadron calorimeter (Fe-AHCAL) is the first exam-
ple of the large-scale application of silicon photomultipliers (SiPM) in the field of high energy
physics [12]. This calorimeter has high longitudinal and transverse granularity and provides an
opportunity for detailed study of hadronic shower development. Previous studies of pion-induced
showers in the Fe-AHCAL include calorimeter response and resolution, as well as comparisons of
pion shower profiles and spatial characteristics with simulations using GEANT4 version 9.4 [7, 13].

This paper provides, for the first time, a comparison of the properties of the showers initiated
by pions and protons and reconstructed using a high-granularity calorimeter in the energy range
from 10 to 80 GeV. The shower parameters extracted from data are compared with simulations us-
ing physics lists from GEANT4 version 9.6 [14]. The experimental setup, event reconstruction and
selection procedure, and systematic uncertainties are described in section 2. Data-MC comparisons
of global observables, such as deposited energy, energy resolution, shower radius, and longitudinal
centre of gravity, are presented in section 3.

2 Experimental data and simulations

2.1 Experimental setup

The data analysed here using beams of positively charged hadrons were collected at CERN in 2007
and at FNAL in 2009. The CALICE setup at CERN is described in detail in ref. [13] and com-
prised the silicon-tungsten electromagnetic calorimeter (Si-W ECAL), the Fe-AHCAL, and the
scintillator-steel tail catcher and muon tracker (TCMT). Beams of positive hadrons in the momen-
tum range from 30 to 80 GeV were delivered with the CERN SPS H6 beam line. The CALICE
setup during the test beam campaign at FNAL is described in detail in ref. [15] and comprised the
Fe-AHCAL and TCMT, without any electromagnetic calorimeter in front of the Fe-AHCAL. The
data at FNAL were collected for positive hadrons with initial momenta of 10 and 15 GeV from the
MTest beam line. Data collected with normal incidence of the beam with respect to the calorimeter
front plane are used for the current analysis.

The Si-W ECAL is a highly granular sampling electromagnetic calorimeter [16] comprised of
30 layers and constructed from three sections with different absorber thicknesses. The transverse
size of its active zone is 18×18 cm2. The Si-W ECAL has a depth of one nuclear interaction length
at normal incidence and a very fine transverse segmentation equivalent to 1×1 cm2 cells.

The Fe-AHCAL is a sampling structure of 38 active layers interleaved with absorber plates
(21 mm of stainless steel per layer). The full transverse size of the calorimeter is 90×90 cm2. Each

– 2 –
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active layer is assembled from 5 mm thick scintillator tiles of varied transverse sizes: 3×3 cm2

in the central part, 6×6 cm2 in the surrounding region, and 12×12 cm2 in the peripheral region.
Each tile is individually read out by a silicon photomultiplier (SiPM). The longitudinal depth of
the Fe-AHCAL is ∼5.3 nuclear interaction lengths. The calibration procedure for the Fe-AHCAL
is described in ref. [12]. The calorimeter was positioned so that the beam struck the calorimeter
centre tiles to minimise lateral leakage.

The TCMT is also a sampling calorimeter with 16 active layers assembled from scintillator
strips with SiPM readout [17]. The first nine layers of the TCMT have 2 cm thick absorber plates
and the same sampling fraction as the Fe-AHCAL. The absorber thickness of the second TCMT
section is larger by a factor of five than in the first section. The total depth of the TCMT amounts
to ∼5.5 nuclear interaction lengths.

The experimental setup, both at CERN and at FNAL, included gaseous C̆erenkov counters
placed upstream of the calorimeters. For the positive hadron test beam data analysed here, the
gas pressure was set between the pion and proton thresholds. The information from the C̆erenkov
counter was not used in the trigger decision during the data acquisition but was recorded for each
event in the data set. This information was used for offline discrimination between pions and
protons on an event-by-event basis.

The visible signal in each calorimeter cell is obtained in units of minimum-ionising particle
(MIP). Only cells with a signal above 0.5 MIP were considered for further analysis; a cell above
threshold is called a hit. The spatial position of each calorimeter cell is defined in the right-handed
Cartesian coordinate system with the z-axis oriented along the beam direction, that is perpendicular
to the calorimeter front plane, and the y-axis pointing up when looking along the beam direction.

2.2 Monte Carlo simulations

Simulations were done using the physics lists QGSP BERT and FTFP BERT from GEANT4 ver-
sion 9.6 patch 1 [14, 18]. The physics list QGSP BERT is widely used for simulation in the LHC
experiments and has demonstrated the best agreement with data in earlier versions, for instance in
the version 9.2 [19]. The QGSP BERT physics list is maintained due to its wide use. The physics
list FTFP BERT was significantly improved in version 9.6 and is now recommended for HEP sim-
ulations by the GEANT4 collaboration [20].

The QGSP BERT physics list employs the Bertini cascade model (BERT) below 9.5 GeV, the
quark-gluon string precompound model (QGSP) above 25 GeV, and the low energy parametrised
model (LEP) in the intermediate energy region. The transition regions between models are from
9.5 to 9.9 GeV and from 12 to 25 GeV. The FTFP BERT physics list uses the Bertini cascade model
for low energies and the Fritiof precompound model (FTFP) for high energies with a transition
region from 4 to 5 GeV.

Separate samples of single pion and single proton events were simulated. The simulated sam-
ples were digitised taking into account the SiPM response, light crosstalk between neighbouring
scintillator tiles in the same layer, and calorimeter noise extracted from data. The digitisation was
validated using the electromagnetic response of the Fe-AHCAL [21]. The test beam profile and its
position on the calorimeter front face in each data run were reproduced in simulations.

– 3 –
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2.3 Spatial observables

The longitudinal segmentation of the Fe-AHCAL permits identification of the longitudinal position
of the first inelastic interaction of an incoming hadron, which is called the shower start. The shower
start is reconstructed on an event-by-event basis as described in appendix A. The information about
the reconstructed shower start layer is useful for event selection and particle identification which
are discussed in section 2.4.

The longitudinal shower development can be studied from either the calorimeter front or the
position of the first inelastic interaction with two different observables. The event longitudinal
centre of gravity, Z, is an energy weighted sum of the longitudinal hit coordinates with respect to
the calorimeter front plane and is obtained for each event as

Z = ∑
N
i=1 eizi

∑
N
i=1 ei

, (2.1)

where N is the total number of hits in the Fe-AHCAL, ei is the hit energy, and zi is the distance
from the hit layer to the calorimeter front plane.

The longitudinal shower depth, Z0, represents a longitudinal centre of gravity calculated with
respect to the shower start in each event as

Z0 =
∑

Nsh
i=1 ei (zi− zstart)

∑
Nsh
i=1 ei

, (2.2)

where Nsh is the number of hits in the Fe-AHCAL from the reconstructed shower start layer and
beyond, ei is the hit energy, zi is the distance from hit layer to the calorimeter front, and zstart is the
distance from the reconstructed shower start layer to the calorimeter front face. In contrast to Z, the
value Z0 does not depend on the shower start position and describes intrinsic longitudinal shower
development.

The longitudinal dispersion, σZ0, characterises the scattering of shower hits around the longi-
tudinal centre of gravity and is calculated for each event as

σZ0 =

√
∑

Nsh
i=1 ei (zi− zstart)2

∑
Nsh
i=1 ei

−Z02, (2.3)

where Z0 is from eq. (2.2).
The radial shower development is characterised by the shower radius, R, which is an energy

weighted sum of hit radial distances to the shower axis (in the plane perpendicular to the beam
direction) and is calculated for each event as

R =
∑

Nsh
i=1 eiri

∑
Nsh
i=1 ei

, (2.4)

where Nsh is the number of hits in the Fe-AHCAL from the shower start layer and beyond, ei is
the hit energy, ri =

√
(xi− x0)2 +(yi− y0)2 is the distance from the hit with coordinates (xi,yi) to

the shower axis with coordinates (x0,y0). The shower axis is defined using the coordinates of the

– 4 –
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Table 1. The total number of collected events; the fraction of rejected muon, positron, and double particle
events; the number of selected pion and proton events for data samples used in the analysis; and the estimated
purity of the selected proton samples.

Beam Total Fraction Fraction Fraction Number Number Purity with
momen- number of µ+ of double of e+ of of of selected ECAL

tum of particle selected selected proton in
GeV events events π+ protons sample front

10 45839 3.0% 13.2% 37.2% 5275 1239 0.74±0.13 no
15 46323 3.8% 13.8% 19.9% 6660 2122 0.80±0.09 no
30 192066 30.1% 0.2% � 1% 10838 7714 0.95±0.01 yes
40 201069 4.6% 0.3% � 1% 20936 4799 0.84±0.06 yes
50 199829 4.4% 0.3% � 1% 21151 4192 0.79±0.06 yes
60 208997 3.8% 0.3% � 1% 21133 5759 0.85±0.05 yes
80 197062 2.8% 0.3% � 1% 16964 8545 0.83±0.04 yes

primary track1 in the Si-W ECAL or the coordinates of the event centre of gravity for the data
taken without the electromagnetic calorimeter. The coordinates of the event centre of gravity are
defined as the energy weighted sums of the coordinates of all hits in the given event as ~xcog =
(∑N

i=1 ei~xi)/(∑N
i=1 ei).

The radial dispersion, σR, characterises the radial scattering of shower hits around the shower
radius and is calculated for each event as

σR =

√
∑

Nsh
i=1 ei r2

i

∑
Nsh
i=1 ei

−R2, (2.5)

where R is from eq. (2.4).

2.4 Event selection

The purpose of the event selection is to obtain a pure sample of single pion or single proton events
for the analysis of the showers produced by these particles in the Fe-AHCAL. The dedicated se-
lection criteria, described in this section, reject events with either an incoming muon, an incoming
positron, or two incoming particles. In addition, a dedicated selection is applied, which is based on
the information about the reconstructed shower start layer and helps to minimise the longitudinal
leakage from the Fe-AHCAL. Table 1 presents for each beam energy the total number of collected
events, the fraction of events rejected by the selection criteria, and the final number of selected
pion and proton events. After the selection, the proton samples remain contaminated by single pion
events. The measurement of the purity of the proton samples is described in detail in appendix B.

1The following algorithm is used to find a primary track on an event-by-event basis: a layer by layer search of the
single hit candidate per layer is performed in the beam direction, that is, along the normal to the calorimeter front plane,
using the nearest neighbour criterion. The search starts from the seed in the first non-empty layer of the calorimeter
and ends one layer before the identified shower start. The minimum length of four hits is required for the identified
primary track.

– 5 –
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The muon identification algorithm involves information from all calorimeter sections and is
based on the comparison of the energy deposition in the combined ECAL+AHCAL and TCMT.
The efficiency of the algorithm was tested with simulations and is better than 99.5% in the energy
range studied. The fraction of identified and rejected muon events does not exceed 5% for all
energies except for the 30 GeV test beam data taken at CERN.

The event is considered to contain more than one incoming particle and is rejected if at
least one of the following conditions is satisfied: (a) the reconstructed energy is higher than
Ebeam + 2.4

√
Ebeam, where Ebeam is the beam energy in GeV; (b) more than 80 MIP or more than

13 hits are detected in the cells from the first five layers of the Fe-AHCAL which are more than
320 mm far from the Fe-AHCAL centre; (c) parallel incoming tracks are identified before the re-
constructed shower start layer. The fraction of such events in the CERN test beam data analysed
here was significantly smaller than in the FNAL data samples. A cross-check of the FNAL data with
simulations and the CERN data for negative pions of the same energy showed that an additional
selection is necessary to reject events with several incoming particles. The following additional
constraints were applied to the FNAL data samples: events were rejected with more than 165 and
more than 220 hits for 10 and 15 GeV samples, respectively. These selections reject less than 0.2%
of single-hadron events as confirmed by a cross-check with simulations. Table 1 shows the fraction
of rejected double particle events after all selections applied.

The pressure in the C̆erenkov counter during the data acquisition was set to separate pions and
protons, therefore, a signal in the counter can be generated by either pions, muons, or positrons.
After the rejection of muon events as described above, the pion samples can remain contaminated
by positrons. The admixture of positrons in the selected proton samples is negligible due to the
requirement of no signal from the C̆erenkov counter in the offline selection of proton events. The
rejection of positron events in the data sets analysed here is based on the calorimeter information.
For the data samples taken at CERN with the Si-W ECAL in front of the Fe-AHCAL, the require-
ment of a shower start at the beginning of the Fe-AHCAL fully removes positron contamination,
as the longitudinal depth of the Si-W ECAL is 24 radiation lengths. Another approach was applied
to reject positrons in the data taken at FNAL without the electromagnetic calorimeter in front of
the Fe-AHCAL. Two characteristics defined in section 2.3 are used for this selection: event longi-
tudinal centre of gravity, Z, and shower radius, R, as electromagnetic showers are known to occur
close to the front face of the calorimeter and to be more narrow than hadronic showers. The shower
is considered to be induced by a positron if the following conditions are satisfied simultaneously:
R < 37 mm and Z < 260 mm. The rejection efficiency of this criterion was estimated using ded-
icated positron runs taken at CERN without an electromagnetic calorimeter and was found to be
∼96% at 10 GeV and ∼98% at 15 GeV. The application of this selection to the negative pion sam-
ples extracted from CERN data (taken with the Si-W ECAL in front) results in pion rejection of
less than 0.8%. A cross-check with simulations shows that the fraction of proton events rejected
by this selection is at least twice smaller than the fraction of pion events.

The C̆erenkov counter was used to discriminate between pions and protons in the test beam
experiments. As the pressure in the gaseous C̆erenkov detector used was set well below the proton
threshold, we assume here that the probability of proton contamination in the pion samples is negli-
gible. At the same time, the inefficiency of the C̆erenkov counters can result in pion contamination
of the proton samples. The estimate of the proton sample purity with respect to pions, η , based

– 6 –



2
0
1
5
 
J
I
N
S
T
 
1
0
 
P
0
4
0
1
4

on the independent muon identification, is described in appendix B. The estimated purities of the
proton samples are listed in table 1 and vary from 74% to 95%.

To minimise leakage into the TCMT, events are required to have a shower start close to the
front face of the Fe-AHCAL, that is in the physical layers 2-5 (3-6) in the CERN (FNAL) data
analysis. The procedure for shower start identification is described in appendix A. Events with
an identified shower start in the first physical layer of the Fe-AHCAL were excluded from the
analysis due to uncertainty associated with the shower start identification. The exclusion of events
with a shower start in the first and second Fe-AHCAL layer significantly reduces the fraction of
remaining positrons in the data samples taken without an electromagnetic calorimeter. After all
selections, the purity of the analysed pion samples with respect to positrons is 0.975±0.015 and
0.99±0.01 at 10 GeV and 15 GeV, respectively.

After requiring a shower start at the beginning of the hadronic calorimeter, the contamination
of the selected samples by muons does not exceed 0.1% for all energies and the admixture of
double particle events is less than one percent. The same procedure of shower start identification
and selection by shower start was applied to the data and simulated samples.

2.5 Systematic uncertainties and biases to observables

Systematic uncertainties. The calculation of the reconstructed energy and resolution requires a
conversion from MIP response to the GeV energy scale. The conversion coefficient from MIP to
GeV for the Fe-AHCAL (electromagnetic calibration) was extracted from dedicated positron runs
with a systematic uncertainty of 0.9% [21]. Other contributions, such as an uncertainty due to the
saturation correction of the SiPM response, are discussed in detail in ref. [21], they were studied
by varying the calibration constants within allowed limits and were found to be negligible.

The impact of the uncertainty due to the shower start identification on the observables was
studied with the simulated samples and was found to be negligible. The shower start uncertainty
is assumed to cancel in simulation to data ratios. This assumption is supported by the fact that
the estimates of the nuclear interaction lengths are in agreement between data and simulations as
shown in section 3.1.

The spatial observables are still affected by leakage due to the limited Fe-AHCAL depth
(∼5.3λ eff

p ) in spite of the applied shower start selection. As shown with simulations, biases from
leakage are negligible below 20 GeV and do not exceed a few percent at 80 GeV. The main impact
of the leakage is on the longitudinal and radial dispersions. Again, the bias has negligible impact
on the comparison of data and simulation.

Correction of contamination bias to observables. The admixture of particle species in the sam-
ples introduces a bias to the observables, which can be corrected if the sample purity and parameters
of the contaminating sample are available. Let us consider a measured mean value, Ameas, of an
observable which is obtained from the contaminated sample with the known purity, η . The mean
value of the same observable for the contaminating admixture, Acont, is determined independently
from a pure sample of contaminating particles. Then the corrected value, Acorr, can be calculated as

Acorr = Ameas
1
η

+Acont

(
1− 1

η

)
. (2.6)
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The uncertainty of the corrected value is calculated using the standard error propagation tech-
nique and taking into account the estimated statistical and systematic uncertainties of Ameas, Acont,
and η . The purity of the pion and proton samples is quoted in section 2.4 and table 1.

The positron contamination in the pion samples results in an overestimate of the mean recon-
structed energy because the Fe-AHCAL is a non-compensating calorimeter, while the mean longi-
tudinal depth and shower radius are underestimated. The values of the observables for positrons in
the Fe-AHCAL were extracted from dedicated positron runs [21]. The most significant correction
for bias due to positron contamination is +2.5% for the mean shower radius of 10 GeV pions. For
15 GeV pion samples, the estimated bias does not exceed 1% for all observables.

The admixture of pions in the proton samples results in an overestimate of the reconstructed
energy and an underestimate of the longitudinal and radial sizes of the proton showers. The largest
biases due to pion contamination are observed for the sample of 10 GeV protons and the corre-
sponding corrections are −4.8%, +1.3%, and +2.8% for the reconstructed energy, longitudinal
centre of gravity, and mean shower radius, respectively. The contamination of the selected samples
with muons and double particle events is negligible and does not need correction.

3 Comparison of observables

3.1 Nuclear interaction length

The interaction lengths λπ and λp for pions and protons were extracted from the distributions of
the reconstructed shower start layer as described appendix A. The energy dependencies of these
estimates are shown in figure 1. The systematic uncertainties for λp are dominated by pion con-
tamination of the proton samples. The interaction length estimated for pion data above 20 GeV is
in better agreement with the simulations than that for proton data.

The dash-dotted lines in figure 1 show the effective nuclear interaction lengths λ eff
π and λ eff

p ,
which were calculated for the compound structure of the CALICE Fe-AHCAL using data on ma-
terial properties from the PDG tables [22]. The variation of the interaction length extracted from
data as a function of the pion or proton energy is compatible with a constant with χ2

NDF < 1.3. The
average value of λp, estimated from the proton data in the energy range studied, is in agreement
with λ eff

p within uncertainties. The average value of λπ is overestimated compared to λ eff
π .

3.2 Calorimeter response and p/π ratio

The total energy deposited by a particle is reconstructed at the electromagnetic scale and
expressed as

Eevent =

{
EHCAL +ETCMT for FNAL data,

E track
ECAL +EHCAL +ETCMT for CERN data,

(3.1)

where E track
ECAL, EHCAL, and ETCMT are the energies deposited in the Si-W ECAL, in the Fe-AHCAL,

and in the TCMT, respectively. The deposited energies are obtained by multiplying the visible
signal in units of MIP by a suitable conversion factor from MIP to GeV for each detector section.

The energy deposited in the Si-W ECAL is that of a minimum ionising particle, as the
events are selected with the shower start at the beginning of the Fe-AHCAL. The obtained con-
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Figure 1. Nuclear interaction length (a) λπ for pions and (b) λp for protons in the Fe-AHCAL extracted
from reconstructed shower start for data samples (circles, solid lines) and simulations using the FTFP BERT
(squares, dotted lines) and QGSP BERT (triangles, dashed lines) physics lists. The error bars represent
the uncertainties from the fit. The systematic uncertainties related to sample contamination in the data
are shown with grey bands, not visible in the left plot. The dash-dotted lines correspond to the effective
nuclear interaction lengths, calculated for the Fe-AHCAL using the material properties data from the PDG
tables [22].

version factor2 for a minimum ionising particle in the Si-W ECAL is 0.0030±0.0002 GeV/MIP.
The value of E track

ECAL for the incident energies from 30 GeV and above accounts for less than 1.4%
of the reconstructed energy and is on average ∼0.35 GeV. The conversion factors for the Fe-
AHCAL and the TCMT are obtained from the electromagnetic calibration factor. The electro-
magnetic calibration factor for the Fe-AHCAL was extracted from dedicated positron runs [21]
and is 0.0236±0.0002 GeV/MIP. Since the first nine TCMT layers are essentially identical to the
Fe-AHCAL layers in terms of absorber and active material, the same electromagnetic calibration
factor is assumed. For the last seven TCMT layers, this factor is adjusted according to the increased
absorber thickness.

The reconstructed energy distributions were fitted with a Gaussian curve in the interval of
±2 r.m.s. around the mean value. Hereafter, the parameters of this Gaussian fit at a given beam
energy are referred to as the mean reconstructed energy Ereco and resolution σreco.

Two examples of the reconstructed energy distribution are shown in figure 2 for pions and
protons of 10 and 80 GeV together with the predictions of the FTFP BERT physics list. In agreement
with the earlier published results [9–11], the reconstructed energy for protons is lower than that for
pions. The relative difference increases with decreasing initial particle energy. This behaviour can
largely be explained by baryon number conservation that results in lower probability to produce
a leading baryon in the interaction of a pion with a nucleus. Therefore, the measurable energy is
different for pions and protons and corresponds to the total particle energy in the case of mesons
and to the kinetic energy in the case of baryons

Eproton
available =

√
p2

beam +m2
proton−mproton, (3.2)

where pbeam is the beam momentum and mproton is the proton rest mass.

2This factor was calculated as the ratio of the mean total energy in units of GeV, deposited in the Si-W ECAL by
simulated muons, to the mean visible signal in units of MIP, measured in the Si-W ECAL for muons from the dedicated
muon runs.
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Figure 2. Reconstructed energy distributions for pions and protons with initial energies (a) 10 and (b)
80 GeV for data (points) and simulations using the FTFP BERT physics list (hatched histograms). The solid
curves are Gaussian fits to the data and simulations. Error bars show the statistical uncertainties.

Figure 3 shows the ratios of the mean reconstructed energy to beam momentum and to the
available energy for data and simulations with the FTFP BERT and QGSP BERT physics lists. The
mean reconstructed energy is corrected for the contamination bias as described in section 2.5. The
difference between positive pion and proton response to the available energy remains at the level
of ∼5%, in agreement with the difference observed for the Sc-Fe Tile ATLAS calorimeter [11].
The FTFP BERT physics list gives better predictions of the response for pions than QGSP BERT
and very good predictions for protons.

The phenomenological interpretation of the observed response behaviour is usually done in
terms of the mean electromagnetic fraction, fem, within a hadron-induced shower and the mean
responses, e and h, to the electromagnetic and hadronic components, respectively. The factor e
also defines the electromagnetic scale and can be extracted from electromagnetic calibration. In
the frame of such an approach, the mean reconstructed energy can be expressed as

Ereco = Ebeam

(
fem +

h
e

fh

)
, (3.3)

where Ereco is the mean reconstructed energy of pions (Eπ ) or protons (Ep) measured at the electro-
magnetic scale, Ebeam is the beam energy, and fh = 1− fem is the mean hadronic fraction. Consid-
erations about the cascade shower development and constraints on π0 production [23] lead to the
assumption of a power-law scaling of the mean hadronic fraction: fh ≈ (Ebeam/E0)m−1, where E0

is the energy at which multiple pion production becomes significant and which is expected to be
different for pions and protons. Applying this scaling to eq. (3.3) gives the calorimeter response

Ereco

Ebeam
= 1− (1−h/e) fh = 1−a Em−1

beam, a = (1−h/e)E1−m
0 , (3.4)

where a and m are free parameters to be determined. The energy dependencies of the response
shown in figure 3(b) and (d) were approximated with eq. (3.4). The fits to data and FTFP BERT in
the studied energy range resulted in χ2

NDF < 1. The response predicted by the QGSP BERT physics

list exhibits variations in the model transition region around 10–15 GeV and the fits give χ2

NDF > 5.
The values of the parameters a and m, obtained from fits to pion and proton responses for data and
FTFP BERT, are shown in table 2.
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Figure 3. Ratio of the mean reconstructed energy Ereco to (a,c) beam momentum and (b,d) available energy
for data and the FTFP BERT (upper row) and QGSP BERT (bottom row) physics lists. The values of Ereco

for data are corrected for contamination bias as described in section 2.5. Error bars show the statistical
uncertainties. The filled and crosshatched bands show the systematic uncertainties for pion and proton data,
respectively. The curves correspond to the power-law approximation.

Table 2. Parameters m and a, obtained from the fit of eq. (3.4) to the dependencies of the pion and proton
response on available energy for CALICE test beam data and simulation with the FTFP BERT physics list.

π+ proton
m a m a

Data 0.94±0.04 0.19±0.03 0.88±0.04 0.28±0.05
FTFP BERT 0.83±0.03 0.25±0.02 0.86±0.02 0.29±0.02

The power-law parametrisation provides enough flexibility to describe a wide range of de-
pendencies with different representations of response, for instance for protons. In the power-law
context, the parameter m is expected to be the same for pions and protons [23]. This assumption is
supported by the FTFP BERT physics list, for which the value of m for pions agrees within uncer-
tainties with the value of m for protons, extracted from the dependence on available energy. The
value of the parameter m for pions from data is higher than the estimate from FTFP BERT. Both
parameters for protons, extracted from data and FTFP BERT, agree within uncertainties.

The ratio of the calorimeter response of protons to pions of the same initial energy is called the
p/π ratio (p/π = Ep

Eπ
). Figure 4(a) shows the p/π ratio extracted in this study for the Fe-AHCAL

together with the results obtained for two other iron-scintillator calorimeters: the CDF End Plug
hadron calorimeter [24] and the ATLAS Tile hadron calorimeter [11]. The results obtained from
the measurements performed with different calorimeters are in good agreement.
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Figure 4. p/π ratio (a) without and (b) with correction for the available energy effect versus beam mo-
mentum for data and simulations of the CALICE Fe-AHCAL; error bars show the statistical uncertainties,
the mean reconstructed energies are corrected for contamination bias as described in section 2.5. The data
obtained with the CDF [24] and ATLAS [11] hadron calorimeters are shown with open diamonds and stars,
respectively.

The energy dependence of the p/π ratio is mainly driven by the difference in measurable
energy for mesons and baryons, which dominates below 20 GeV and gives way to other effects at
higher energies. This behaviour is qualitatively supported by the comparison of the left and right
plots in figure 3 and is quantitatively estimated in ref. [24]. The available energy effect can be taken
into account by multiplying the ratio of reconstructed energies by the ratio of measurable energies
Ebeam/Eproton

available. The difference between pion and proton response, which remains after taking into
account the available energy effect, amounts to 2–5% as follows from figure 4(b). This remaining
difference is related to the lower probability of π0 production in the interaction of a proton with a
nucleus [23].

Both physics lists tend to underestimate the p/π ratio above 20 GeV. The FTFP BERT physics
list underestimates the p/π ratio due to an overestimate of the pion response while the proton
response is reproduced within uncertainties. The predictions of QGSP BERT are closer to the data
because both pion and proton response is overestimated by this physics list above 20 GeV. At the
same time, abnormal behaviour is visible around the model transition region in the QGSP BERT
physics list.

3.3 Energy resolution

Absolute and relative energy resolutions for pions and protons are shown in figure 5 for data and
simulation with the FTFP BERT and QGSP BERT physics lists. The dashed curves in figure 5(b) and
(d) represent the result from ref. [13], in which the energy dependence of the relative pion energy
resolution is parametrised in the energy range 10–80 GeV as a quadratic sum

σ

E
=

a1√
E
⊕a2⊕

a3

E
, (3.5)
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where E is in GeV. The stochastic and constant terms, a1 = 0.576±0.004 GeV
1
2 and a2 = 0.016±

0.003, were obtained in ref. [13] from the fit to pion data. The noise contribution, a3 = 0.18 GeV,
was fixed to the measured noise of the combined calorimeter setup (Si-W ECAL + Fe-AHCAL
+ TCMT).

The energy dependence of σreco for pions is not reproduced by the simulation. The fluctuations
of the energy deposition in the simulated hadronic showers grow steeper with increasing energy.
This tendency is clearly seen in figure 5(a) and (c) where the smooth curves are shown to guide the
eyes. The overestimate of σreco exceeds 15% at 80 GeV. As both response and absolute resolution
for pions are overestimated by both physics lists, the behaviour of the relative energy resolution is
well reproduced by simulations.

The absolute energy resolution tends to be better for protons than for pions. The simulations
predict a larger difference in σreco between pions and protons than is observed in data. The relative
energy resolutions for protons and pions are within uncertainties.

3.4 Longitudinal shower depth

The observable Z0 does not depend on the shower start position and is convenient for the compar-
ison of showers induced by different types of hadrons with different nuclear interaction lengths.
Typical distributions of Z0 are shown in figure 6 for pions and protons. The longitudinal shower
depth of a pion shower tends to be closer to the shower start than that of a proton shower.

The mean longitudinal shower depth 〈Z0〉 is extracted from the distributions shown in figure 6.
The energy dependence of 〈Z0〉 in figure 7 increases logarithmically with energy from ∼1λ eff

p at
10 GeV to ∼1.5λ eff

p at 80 GeV. Figure 8 shows the simulation to data ratios. The QGSP BERT
physics list underestimates 〈Z0〉 by ∼5–7% for both pions and protons above 20 GeV. The
FTFP BERT physics list gives a very good prediction of 〈Z0〉 for pions and slightly overestimates
the rate of growth for protons.

The mean longitudinal dispersion 〈σZ0〉, shown in figure 9, is of the same order of magnitude
as the mean 〈Z0〉 and also increases logarithmically with energy. The values of 〈σZ0〉 predicted by
the FTFP BERT physics list are in agreement with data for both types of hadrons. The QGSP BERT
physics list underestimates the mean longitudinal dispersion above 20 GeV by ∼5% (figure 10).

3.5 Mean shower radius

The radial shower development can be characterised by the shower radius R defined in eq. (2.4).
Typical distributions of the shower radius are shown in figure 11, from which the mean shower
radius, 〈R〉, is extracted for pion- and proton-induced showers. Proton-induced showers tend to be
wider than pion showers. For data, the fluctuations of the radius of pion-induced showers are larger
than those of proton-induced showers.

The energy dependencies of the mean shower radius are shown in figure 12. The values of 〈R〉
decrease logarithmically with increasing energy and this general behaviour is well reproduced by
all physics lists studied. The pion (proton) showers are observed to be narrower by ∼25% (∼30%)
at 80 GeV than at 10 GeV. The trend is explained by the increase of the electromagnetic fraction
in hadronic showers with increased initial energy of an incoming hadron [8, 9]. Since more of
the shower energy is electromagnetic and since electromagnetic showers are more compact than
hadronic showers, the overall shower structure is more compact as beam energy increases.
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Figure 5. (a,c) Absolute and (b,d) relative energy resolution for pions (circles), protons (squares), sim-
ulated pions (triangles), and simulated protons (down triangles) using the FTFP BERT (upper row) and
QGSP BERT (bottom row) physics lists. The mean reconstructed energies for data are corrected for con-
tamination bias as described in section 2.5. Error bars show the statistical uncertainties. The filled and
crosshatched bands show the systematic uncertainties for pion and proton data, respectively (not estimated
for the absolute resolution).

The ratio of simulations to data is shown in figure 13. The FTFP BERT physics list pre-
dicts the mean radius of proton showers within uncertainties and underestimates the mean radius
of pion showers by ∼5–7%. The QGSP BERT physics list demonstrates better agreement with
data at 10 GeV but underestimates the shower width at higher energies by ∼10% for both pions
and protons.

The mean radial dispersion 〈σR〉 is of the same order of magnitude as the mean value 〈R〉
but decreases more slowly with increasing energy as shown in figure 14. The discrepancy be-
tween data and simulation increases with energy but is smaller than for the mean shower ra-
dius. Again, the FTFP BERT physics list describes the data better than QGSP BERT, especially
for protons (figure 15).
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Figure 6. Distributions of the longitudinal shower depth Z0 of pion- and proton-induced showers at initial
momentum (a) 10 GeV/c and (b) 80 GeV/c for data (points) and simulations by the FTFP BERT physics list
(hatched histograms). Error bars show the statistical uncertainties.
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Figure 7. Mean longitudinal shower depth of (a) pion and (b) proton-induced showers in units of
λ eff

p = 231 mm for data (circles, solid lines) and simulations with the FTFP BERT (squares, dotted lines)
and QGSP BERT (triangles, dashed lines) physics lists. The values of 〈Z0〉 for data are corrected for con-
tamination bias as described in section 2.5.

Beam momentum [GeV]
0 20 40 60 80

D
at

a
〉

Z
0

〈
 / 

M
C

〉
Z

0
〈

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

FTFP_BERT

QGSP_BERT

CALICE Fe-AHCAL

(a)
+π

Beam momentum [GeV]
0 20 40 60 80

D
at

a
〉

Z
0

〈
 / 

M
C

〉
Z

0
〈

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

FTFP_BERT

QGSP_BERT

CALICE Fe-AHCAL

(b)proton
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dotted lines) and QGSP BERT (triangles, dashed lines) physics list to data for (a) pion and (b) proton-
induced showers. The values of 〈Z0〉 for data are corrected for contamination bias as described in section 2.5.
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Figure 9. Mean longitudinal dispersion of (a) pion and (b) proton-induced showers in units of λ eff
p = 231 mm

for data (circles, solid lines) and simulations with the FTFP BERT (squares, dotted lines) and QGSP BERT
(triangles, dashed lines) physics lists. The values of 〈σZ0〉 for data are corrected for contamination bias as
described in section 2.5.
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showers. The values of 〈σZ0〉 for data are corrected for contamination bias as described in section 2.5.
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Figure 12. Mean shower radius of (a) pion and (b) proton-induced showers for data (circles, solid lines) and
simulations with the FTFP BERT (squares, dotted lines) and QGSP BERT (triangles, dashed lines) physics
lists. The values of 〈R〉 for data are corrected for contamination bias as described in section 2.5.
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Figure 13. Ratio of the mean shower radius form simulations using the FTFP BERT (squares, dotted lines)
and QGSP BERT (triangles, dashes lines) physics lists to data for (a) pion and (b) proton-induced showers.
The values of 〈R〉 for data are corrected for contamination bias as described in section 2.5.
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Figure 14. Mean radial dispersion of (a) pion and (b) proton-induced showers for data (circles, solid lines)
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Figure 15. Ratio of the mean radial dispersion from simulations using the FTFP BERT (squares, dotted
lines) and QGSP BERT (triangles, dashes lines) physics lists to data for (a) pion and (b) proton-induced
showers. The values of 〈σR〉 for data are corrected for contamination bias as described in section 2.5.

4 Conclusion

Global parameters of showers induced by positive hadrons with initial momenta from 10 to
80 GeV/c in the CALICE analogue scintillator-steel hadronic calorimeter have been analysed and
compared with simulations using the QGSP BERT and FTFP BERT physics lists from GEANT4 ver-
sion 9.6 patch 01. In general, the detector response to hadrons tends to increase more rapidly with
energy in simulations than in data. Of the two physics lists studied, FTFP BERT gives a better pre-
diction of the response for both pions and protons. The deficiency of the calorimeter response for
protons with respect to pions, which cannot be explained by the difference in available energy, is
observed to be ∼2–5%. The ratio of the proton to pion response tends to be underestimated by the
simulations.

Proton-induced showers tend to be ∼5% longer and ∼10% wider than pion showers at the
same energy in terms of the longitudinal centre of gravity and shower radius, respectively. The
spatial shower development for both types of hadrons is much better predicted by the FTFP BERT
physics list, especially above 20 GeV. The event-by-event fluctuations of the spatial characteristics
are also quite well reproduced. The simulated showers are still narrower than those observed in
data but the FTFP BERT physics list predicts the mean shower radius with an accuracy of ∼5–7%.

The most significant discrepancy between test beam data and simulations is seen in the abso-
lute energy resolution for pions. The simulated width of the energy distribution of pion showers
increases faster with pion initial energy than observed in data. The relative energy resolutions for
pions and protons are in good agreement and are well reproduced by simulations with both physics
lists studied.
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A Shower start identification and estimate of the nuclear interaction length

The following algorithm was used to identify the shower start layer, that is the longitudinal position
of the primary inelastic interaction of the incoming hadron. Two values are calculated on a layer-
by-layer basis starting from the calorimeter front layer:3 the moving average Mi of visible energy
in ten successive layers up to i-th layer and the number of hits in the i-th layer Ni. Two conditions
are checked: (Mi + Mi+1) > Mthr and (Ni + Ni+1) > Nthr. When both conditions are satisfied the
i-th layer is considered to be the shower start layer. The thresholds Mthr and Nthr were optimised
using the simulated pion samples.

The difference between the reconstructed shower start position, zreco
start, and the real shower start

position, ztrueMC
start , is shown in figure 16(a) for 80 GeV pions. The values of ztrueMC

start were obtained
from the GEANT4 information about the position of the primary inelastic interaction of the incom-
ing particle. The uncertainty of the algorithm is approximately ±1 Fe-AHCAL layer (≈32 mm).
The algorithm finds the shower start within ±1 layer of the true layer for ∼80% of hadron events
in the energy range studied, as determined with simulations.

Typical distributions of the reconstructed shower start position zreco
start with respect to the

calorimeter front face are shown in figure 16(b) for data and FTFP BERT physics list. The dis-
tributions of the shower start layer for pions f (zstart) can be fit with the exponential function

f (zstart) = Aexp
(
−zstart

λπ

)
, (A.1)

where A is a normalisation factor and λπ is the estimated nuclear interaction length. The two first
layers with large uncertainty for the shower start finding algorithm as well as several last layers
were excluded from the fit, and the fit interval is from 65 mm to 900 mm for all samples.

The proton data samples contain pion contamination that varies from 5% to 35%. The dis-
tribution of the shower start position for a mixed sample of hadrons with different inelastic cross
sections can be considered as a sum of two independent contributions

fmix(zstart) = A
(

η exp
(
−zstart

λp

)
+(1−η) exp

(
−zstart

λπ

)
λp

λπ

)
, (A.2)

3The calorimeter front layer is the first layer of the Fe-AHCAL for the samples taken without the electromagnetic
calorimeter or the first layer of the Si-W ECAL.
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Figure 16. (a) Difference between the reconstructed shower start position and the true shower start position
for simulated samples of 80 GeV pions. (b) Distributions of the reconstructed shower start position for
data (circles) and simulations (filled histogram) for 80 GeV pions. The estimated nuclear interaction length
obtained from the fit to data is shown in the legend. See text about fit details.

where the normalisation factor, A, and the nuclear interaction length for protons, λp, are estimated
variables, while the purity of proton sample, η , and the nuclear interaction length for pions, λπ ,
are taken as previously determined and known parameters. The purity η is estimated as described
in appendix B. The values of λπ are extracted from the fit to the distributions obtained from the
corresponding pion samples at the same energy.

The following procedure was used to estimate the systematic uncertainty due to the uncertain-
ties of λπ and purity. The set of parameter values was generated using Gaussian distributions with
the variance corresponding to the uncertainty of a given parameter and the generated values were
used in the fit to proton data. The r.m.s. of the obtained distribution of λp is taken as a systematic
uncertainty. The contributions from both parameters are summed up in quadrature.

B Estimate of the sample purity

The purity of the sample, η , is estimated using the efficiency, ε, to select contaminating events.
The efficiency ε in turn is determined from an independent procedure, which does not involve
information from the C̆erenkov counter.

In the current study, the pion-proton separation is based on the information from the C̆erenkov
detector. The independent calorimeter-based muon identification procedure, as introduced in
section 2.4, can be used to measure the efficiency of the C̆erenkov counter. Assuming that the
efficiency for pions εpion is approximately the same as for muons εmuon the value of εpion can be
calculated as

εpion ≈ εmuon =
Ncher

muon

Ntotal
muon

, (B.1)

where Ncher
muon is the number of identified muons that gave a signal in the C̆erenkov detector, Ntotal

muon

is the total number of muons identified using the calorimeter-based procedure.
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The purity of the proton sample, ηp, i.e. the ratio of the true number of protons to the number
of identified protons, can be obtained as

ηp = 1− Nπ

Np

(
1− εpion

εpion

)
, (B.2)

where Nπ (Np) is the number of pions (protons) in the selected samples identified using the
C̆erenkov counter. The uncertainties on εmuon are estimated from the available statistics of the muon
event sample and are propagated to the uncertainty of ηp. As the pressure in the gaseous C̆erenkov
detector used was set well below the proton threshold, the misidentification of protons is negligible.

The efficiency of positron identification, εpos, is estimated from the dedicated positron runs
taken without an electromagnetic calorimeter as

εpos =
Nselected

Ntotal
, (B.3)

where Nselected is the number of selected positrons from the pure positron sample with Ntotal events.
Then the purity of the selected pion samples are calculated from the equation

ηπ = 1−
Npos

Nπ

(
1− εpos

εpos

)
, (B.4)

where Npos (Nπ ) is the number of positrons (pions) in the selected samples, identified using the
positron selection procedure, which is described in section 2.4.
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