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Abstract— High-performance calorimetry conducted at future
hadron colliders, such as the FCC-hh, poses a significant chal-
lenge for applying current detector technologies due to unprece-
dented beam luminosities and radiation fields. Solutions include
developing scintillators that are capable of separating events at
the sub-fifty picosecond level while also maintaining performance
after extreme and constant neutron and ionizing radiation
exposure. The radiation-hard innovative calorimeter (RADiCAL)
is an approach that incorporates radiation tolerant materials
in a sampling “shashlik”-style calorimeter configuration, using
quartz capillaries filled with organic liquid or polymer-based
wavelength shifters embedded in layers of tungsten plates and
lutetium-yttrium oxyorthosilicate (LYSO) crystals. This novel
design intends to address the priority research directions (PRD)
for calorimetry listed in the DOE basic research needs (BRN)
workshop for high energy physics (HEP) instrumentation. Here
we report preliminary results from an experimental run at the
Fermilab Test Beam Facility (FTBF) in June 2022. These tests
demonstrate that the RADiCAL concept is capable of <50 ps
timing resolution.

Index Terms— Calorimetry, fast-timing, radiation-hard,
scintillator.

I. INTRODUCTION

THE radiation-hard innovative calorimeter (RADiCAL)
was initially conceived to target precision calorime-

try for use in future hadron collider experiments [1]. The
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Fig. 1. Top: diagram of a RADiCAL module. Bottom: diagram of a
RADiCAL tile.

requirements of such a collider include timing resolution under
50 ps and an EM energy resolution approaching σE/E =

10%(E)1/2
⊕ 0.3/E ⊕ 0.7% [2].

To address these challenges, the RADiCAL concept envi-
sions a shashlik style sampling calorimeter composed of many
individual modules each 13 cm long and 1.4 × 1.4 cm2 in cross
section. Fig. 1 is a generic schematic of a single prototype
RADiCAL module. Comprising such a module are 28 tiles of
tungsten (2.5 mm thick) and 29 tiles of lutetium-yttrium oxy-
orthosilicate (LYSO) (1.5 mm thick). The radiation length of
this structure is 4.7 mm and the Moliére radius is 13.7 mm [3].
There are four 1.3 mm and one 0.9 mm diameter holes in each
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Fig. 2. Assembly of a RADiCAL module. Top: Shows the tiles being stacked.
Bottom: Shows the delrin assembly.

Fig. 3. RADiCAL module in the beam line at FTBF, June, 2022.

tile to allow for the insertion of quartz capillaries through the
length of the module for optical readout, Fig. 1 (Bottom).

Monte Carlo simulations using GEANT4 [4], [5], [6] and
previous test beam experiments of the RADiCAL concept
using a 4 × 4 array of RADiCAL modules demonstrated real-
istic expectations for achieving energy resolution performance
goals [3], [7], and that testing an individual module is sufficient
to investigate timing characteristics [3].

To further explore the potential timing characteristics, a sin-
gle RADiCAL module was tested at the Fermilab Test Beam
Facility (FTBF) [9] in June 2022 using a low-energy mixed
pion-electron beam E = 28 GeV, with preliminary results
reported here.

II. EXPERIMENTAL SETUP

A single RADiCAL module was prepared by stacking
alternating tiles of LYSO and tungsten, separated by lasercut
sheets of Tyvek, and placed in a milled delrin housing, shown
in Fig. 2. Quartz capillaries were then inserted and readout
cards attached. A RADiCAL module with both electronics
cards attached is shown in the beam line in Fig. 3.

A RADiCAL capillary is a hollow quartz tube. Each
capillary is 18 cm long, covering the active volume of the
module and extending 2.5 cm from the module on either end,
delivering light from the module to silicon photomultiplers
(SiPMs) mounted on readout cards.

Fig. 4. Timing capillary between two energy capillaries.

Fig. 5. Left: average normalized waveforms seen by the low gain. Right:
high-gain channels during the June, 2022 run.

Two varieties have been used in tests of the RADiCAL
concept. One is referred to as an energy capillary, and one
is referred to as a timing capillary.

Energy capillaries are 1000 µm in diameter, with a 400 µm
bore filled with the organic liquid EJ309 doped with propri-
etary wavelength shifter DSB1 [10]. One end of each liquid
filled capillary has its core plugged and fused shut with a ruby
quartz filament of 5 mm length. The ruby absorbs wave-shifted
light traveling principally through the liquid core, preventing it
from reaching the photosensors, while allowing light traveling
preferentially through the core and quartz walls to be detected.
This technique levels and makes uniform the longitudinal
response of wave-shifted light collection [3].

Timing capillaries have an outer diameter of 1150 µm and
an inner bore with 950 µm diameter and contain no liquid.
In each end, the bore is plugged with a solid quartz rod and
fused to create a single element. The two rods leave a gap at
the location of shower max within the RADiCAL, determined
as mentioned earlier from GEANT4 simulation [3], and that
gap is filled with a 15 mm long polymer fiber containing DSB1
waveshifter of 900 µm diameter. The light generated within a
timing capillary therefore occurs from a region about shower
max.

Fig. 4 reveals this localized light generation, comparing the
UV illumination of a timing capillary situated between two
energy capillaries in this figure.

These capillaries can be in any configuration within the
module. The June 2022 configuration reported here used four
timing capillaries. The center hole (envisioned for calibrating
multiple modules) was unused in this test.

When particles enter the RADiCAL, they cause the LYSO
tiles to scintillate. This light is absorbed by the DSB1 in the
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Fig. 6. MCP, the RADiCAL, and the LGC in alignment at the FTBF. The beam travels from the left to the right, hitting the MCP first.

Fig. 7. Integrated low-gain signals in each capillary versus location of the particle in X and Y , demonstrating that larger signals are seen when particles hit
closer to a capillary.

timing capillaries, waveshifted, then totally internally reflected
to both ends where the capillaries contact the faces of the
SiPMs.

Each SiPM had two readout circuits, one with a low-gain
amplifier and one with a high-gain differential amplifier [8].
The low-gain amplifier was intended to give clear pulse
shapes for energy measurement. The high-gain amplifier was
intended to give fast sharp pulses for precise signal arrival time
measurements. Fig. 5 shows average waveforms from the June
2022 run.

Fig. 6 shows the experiment’s three important elements. The
RADiCAL module was placed in the MT6 beam at the FTBF
and aligned with a Hamamatsu R3809U-50 microchannel plate
(MCP) to act as the trigger for data acquisition. This MCP
has an expected time resolution σ ≈ 10 ps [11]. Behind
these two modules was positioned a lead glass calorimeter
(LGC) of dimensions 15 × 15 × 50 cm3. Its purpose was
threefold: to record the energy of electromagnetic showers
that might be only partially contained within the RADiCAL
module; to measure the energy of beam particles that miss
the RADiCAL altogether (including those particles which pass
through the un-instrumented central hole of the RADiCAL);
and to identify and discard hadrons and minimum ionizing
particles (MIPs) that pass directly through the RADiCAL. This
latter feature was important as the 28 GeV beam at the FTBF
consists of electrons with a comparable admixture of pions
and MIPs or MIPs [9].

Additionally, a silicon telescope [12] was positioned
upstream of these elements in the beam line to provide tracking
information for incoming beam particles and to measure their
incident positions on the RADiCAL module.

Fig. 7 shows the measured energy versus projected track
position from the silicon telescope for each capillary, showing
a clear position dependence on how much light a capillary
detects. This feature can be used to locate a particle (charged or
uncharged) within a RADiCAL module based on the relative
intensities of each capillary and hence with or without incident
beam location information.

Fig. 8. Integrated signals (mV · ns) in the LGC versus integrated low-gain
signals in the RADiCAL module for 28 GeV beam.

Data were acquired using two 16-channel CAEN DT5742
desktop digitizers. The signals from the RADiCAL and the
LGC were fed into the digitizers, and the signal from the MCP
was fed into the trigger input on both. A particle transiting the
MCP creates a signal, triggering the DT5742 to start acquiring
data. The MCP has a larger active area than the RADiCAL,
so the triggering particle could deposit its energy in either
the RADiCAL module or the LGC, or both. This allows the
LGC to identify particles that the RADiCAL missed or only
partially contained and allows us to select only events that
were primarily contained by the RADiCAL.

The data recorded online were converted from a binary
format to the ROOT format [13], the framework within which
the data were subsequently analyzed for this report. Approx-
imately, 70,000 events were taken with the 28 GeV beam in
June, 2022.

III. ANALYSIS

All waveforms were pedestal-subtracted with pedestal
determined by averaging the first ≈25 ns of an event,
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Fig. 9. Left: energy (GeV) in the LGC versus the sum of energy in the LGC and the RADiCAL module. Center: beam energy as reconstructed from the
sum of LGC and RADiCAL signals with electron peak, MIP peak, and hadron tail present. Right: events reconstructed by the RADiCAL and the LGC with
23 < ELGC + ERAD < 33 GeV, event track within 3 mm of the RADiCAL center, and ERAD > 10 GeV.

or approximately 125 samples. Samples are taken every 0.2 ns.
Low-gain signals were fit to determine the signal integral in
units of mV · ns.

To reconstruct the incident particle energy in GeV, the
integrated signal in the LGC was plotted against the sum of all
eight integrated low-gain signals from the RADiCAL module,
in Fig. 8. The signals in mV · ns for each event in each detector
were then scaled to match the nominal 28 GeV beam energy.
This is shown graphically in Fig. 9 (Center).

Events were then selected for timing analysis based on three
main criteria: to select electron candidates from the mixed
beam, the combined signal in the LGC and the RADiCAL
was in the range 23 to 33 GeV. To discard tracks through the
un-instrumented 1 mm diameter central hole of the RADiCAL,
the signal in the RADiCAL module was required to be greater
than 10 GeV. To minimize the position dependence of the
timing measurement, the location of the incident track position
determined by the silicon telescope fell within a circle of
6 mm diameter at the center of the RADiCAL module, as there
were not enough statistics to correct for position dependence.
We opted to select events from a small region in the center
where we can assume the position dependence is negligible.
The reconstructed energies of these selected events are shown
in Fig. 9 (Right).

After this event selection, the time stamps were estab-
lished for all eight high-gain readout channels as follows: a
timestamp was set the moment a high-gain signal crossed a
specific threshold. The level of this threshold was optimized
for each channel to achieve the best time resolution [see Fig. 5
(Right)]. Then, event by event, the average of these eight time
stamps was then compared with the corresponding reference
time stamp provided by the trigger MCP. The resolution of
this timing difference σ (tRAD − tMCP) was then plotted as
a function of the electron energy detected in the RADiCAL
module, Fig. 10.

IV. RESULTS

As Fig. 10 indicates, the timing resolution of the RADi-
CAL module σ (tRAD − tMCP) improves monotonically with
increasing detected energy. This result is consistent with
expectations from previous studies, which showed improved

Fig. 10. Average timing resolution versus energy of the RADiCAL module.

timing resolution with increasing signal amplitude [3], [14].
Averaged over the fully detected electron energy range:
E > 15 GeV, the resolution of the timing difference is:
σ (tRAD − tMCP) = 49.5 ps ± 5 ps, demonstrating that the
RADiCAL can achieve its time resolution objective.

In the portion of the data near the peak of the detected
electron energy spectrum: 23 < ERAD < 30 GeV, the resolution
of the timing difference is: σ (tRAD − tMCP) = 43 ps ± 4.4 ps.
Given that the timing resolution of the MCP tube is σ (tMCP) ≈

10 ps, this yields a measured value of: σ (tRAD) = 42 ps ±

4.3 ps for a detected particle energy of E ≈ 28 GeV.
This preliminary result will be further refined with improved

particle tracking while probing the timing performance as a
function of detected electron energy.

V. CONCLUSION

A single module of a shashlik style sampling calorimeter
(the RADiCAL) composed of alternating layers of LYSO
and W, embedded with quartz capillaries filled with wave-
length shifters were tested at Fermilab in June 2022. This test
has demonstrated that the RADiCAL concept can achieve sub
50 ps timing resolution for a detected electron energy E =

28 GeV. Combined with earlier measurements, the RADiCAL
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has proven itself to be a fast, radiation hard calorimeter
concept.

Future plans include measurements of the timing perfor-
mance over an extended range of electron beam energies from
25 < E < 200 GeV.
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