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Abstract. In this work, we study inflation with the non-minimally coupled quadratic, Stan-
dard Model (SM) Higgs and hilltop potentials through ξφ2R term in the Palatini gravity.
We first analyze observational parameters of Palatini quadratic potential as functions of ξ
for high-N scenario and low-N scenario. In addition to this, taking into account inflaton
φ has a non-zero vacuum expectation value v afterwards inflation, we display observational
parameters of well-known symmetry-breaking potentials type of Higgs potential and its gen-
eralizations which are hilltop potentials in the Palatini formalism for high-N scenario and
low-N scenario. We calculate inflationary parameters of Palatini Higgs potential as functions
of v for different ξ values where inflaton values both φ > v and φ < v during inflation as well
as we show that observational parameters of Palatini Higgs potential in the induced gravity
limit for high-N scenario. On the other hand, we illustrate different from the Higgs potential
the effect of ξ on hilltop potentials which can agree with the observations for inflaton value
solely φ < v and ξ, v � 1 for both two scenarios, which we mentioned above. For each
considered potentials, we also display ns − r values fit the current data given by the Keck
Array/BICEP2 and Planck collaborations.
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1 Introduction

Inflation [1–4] is the most outstanding scenario for the primordial universe. It is considered
that inflation has become a solution isotropy and homogeneity problem as well as it ex-
plains spatial flatness of the Universe to a high degree successfully. This inflationary era can
also produce and extend the small inhomogeneities which have appeared in the large scale
structures and the anisotropy in the cosmic microwave background radiation temperature
(CMBR). The most recent measurements of the CMBR [5, 6] made by the Planck satellite
give some parameters that are related with the inflationary perturbations two have already
become even more precisely in recent years which are the amplitude of the curvature pertur-
bation, ∆2

R ≈ 2.4 × 10−9 and the corresponding spectral index, ns = 0.9625 ± 0.0048. The
other parameter which is namely as the running of the spectral index, α = 0.002 ± 0.010.
Even though the current constraints on the α are not sufficient to test the inflationary models,
they are considered to be enhanced much with observations of the 21 cm line [7–9] approx-
imately at the level of α = O(10−3). In addition to this, the recent data from the Keck
Array/BICEP2 and Planck collaborations [10] constraints strongly the tensor-to-scalar ra-
tio r < 0.06, which gives successful explanation to the amplitude of primordial gravitational
waves and the scale of inflation. Some ongoing CMB B-mode polarization experiments [11–13]
pushed the limit decrease to r . 0.001 or targeting to detect up this limit. Each parameters
above are constrained at the pivot scale k∗ = 0.002 Mpc−1.

The observational parameters, in particular the spectral index ns and the tensor-to-
scalar ratio r have been calculated for various inflationary potentials [14]. However, the most
minimal realization scenario of inflation is the Standard Model Higgs boson behaves as the
inflaton field with minimal coupling (ξ = 0). On the other hand, a renormalizable scalar field
theory in curved space-time needs to the non-minimal coupling ξφ2R between the inflaton
and the Ricci scalar [15–17]. Furthermore, even if the non-minimal coupling ξ equals to zero
at the classical level, it will be created by quantum corrections [15] and in particular, non-
minimal coupling to gravity is necessary to sufficiently flatten the Higgs potential at large
field values, so that it is agreement with observations. In this paper aims to extend the
previous studies of inflaton is coupled non-minimally to gravity, presenting how the value of
the non-minimal coupling parameter ξ affects the observational parameters for the inflationary
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potentials in the Palatini formalism, in case of the quadratic potential and symmetry-breaking
type inflation potentials where inflaton has a non-zero vacuum expectation value v afterwards
inflation. Non-zero v after inflation is that such potentials can be related with symmetry-
breaking in the very early universe. Examples of such models for symmetry-breaking which
we investigate in this work the well-known Higgs inflation [18, 19] models which are based on
Standard Model of particle physics and especially, the Higgs field of the SM behaves as the
inflaton field, a scenario proposed by ref. [19]. We also discuss hilltop potentials which are
simple generalization of Higgs potential.

Furthermore, in this paper, we use dynamics of the Palatini gravity to be able to calculate
inflationary parameters. Although the Metric and Palatini formalisms are equivalent in the
theory of General Relativity, if matter fields are coupled non-minimally to gravity, these
two formalisms correspond to two different theories of gravity such refs. investigated [20–
25]. In particular, inflationary models with non-minimal couplings to gravity can not be
explained only form of potential, gravitational degrees of freedom requires to define [20]. In
the Palatini formalism different from Metric one, both the metric gµν and the connection
Γ are independent variables. Even though the two formalisms have the same equations of
motion and as a result they correspond to the equivalent physical theories, the presence
of the non-minimal coupling between gravity and matter, physical equivalence is disappear
for these two formalisms, in particular the ξ-attractor models which are known as attractor
behavior occuring to the Starobinsky model for larger ξ values in Metric formulation is lost
in the Palatini approach [26] and r can be taken much smaller values compared to the Metric
formulation for larger ξ values [24, 27–29]. Another different case is between Metric and
Palatini formalism, the inflaton stays sub-Planckian regime to supply a natural inflationary
era in the Palatini formalism [20].

In literature, inflationary potentials in Palatini gravity are taken into account some
papers [20, 22, 23, 30–32]. In ref. [22] discussed quadratic potential in Palatini gravity taking
N∗ = 50 and N∗ = 60, they found that strength of non-minimal coupling, ξ = O(10−3) to
agree with the current data just for N∗ = 60. In addition to this, Higgs inflation in Palatini
formulation has been studied refs. [20, 23, 30–32]. According to these papers, predictions
of r is very tiny for ξ & 1 values and so r is highly suppressed further well-known attractor
behaviour in the Metric formulation for large ξ values in Starobinsky model is vanished
for Palatini approach. The paper is organized as follows, we first describe inflation with
a non-minimal coupling and how inflationary parameters calculate (section 2) in Palatini
formulation. Next, we analyze Palatini quadratic potential in the large-field limit (section
3). We then calculate inflationary predictions in detail for two different symmetry-breaking
inflation type potentials, known as the Higgs potential (section 4) for inflaton value for both
φ > v and φ < v as well as different from the Higgs potential, we illustrate hilltop potentials
can compatible with the current measurements for cases of φ < v and ξ, v � 1 (section 5).
Furthermore, (in section 4) we calculate inflationary parameters in the induced gravity limit
for Palatini Higgs inflation. Finally, we discuss our results and summary of them (section 6).

2 Palatini inflation with a non-minimal coupling

We describe non-minimally coupled scalar field φ with a canonical kinetic term and a potential
VJ(φ) inflation action in the Jordan frame

SJ =

∫
d4x
√
−g
(

1

2
F (φ)gµνRµν(Γ)− 1

2
gµν∂µφ∂νφ− VJ(φ)

)
. (2.1)
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Here, the subscript J indicates that the action is defined in a Jordan frame. Rµν is the Ricci
tensor and it is defined by that form

Rµν = ∂σΓσµν − ∂µΓσσν + ΓρµνΓσσρ − ΓρσνΓσµρ. (2.2)

In the metric formulation the connection is taken as a function of metric tensor, that is,
Levi-Civita connection Γ̄ = Γ̄ (gµν)

Γ̄ λµν =
1

2
gλρ(∂µgνρ + ∂νgρµ − ∂ρgµν). (2.3)

On the other hand, in the Palatini formalism both gµν and Γ are independent variables, and
the only assumption that the connection is torsion-free, i.e. Γ λµν = Γ λνµ. If solving equations
of motion, one can be obtained as follows [20]

Γλµν = Γ
λ
µν + δλµ∂νω(φ) + δλν∂µω(φ)− gµν∂λω(φ),

where

ω (φ) = ln
√
F (φ), (2.4)

in the Palatini formulation. In this work, in order to calculate inflationary parameters of
symmetry-breaking type inflation potentials, we choose F (φ) includes of a constant m2 term
and a non-minimal coupling ξφ2R which is necessary for renormalizable scalar field theory in
curved space-time [15–17] as we mentioned above. We are using units that the reduced Planck
scale mP = 1/

√
8πG ≈ 2.4 × 1018 GeV is set equal to unity, thus we consider F (φ) → 1 or

φ → 0 after inflation. In that case, by taking into consideration m2 = 1 − ξv2, we obtain
F (φ) = m2+ξφ2 = 1+ξ(φ2−v2) [33]. What is more, we take into account Palatini quadratic
potential in the large-field limit, so to be able to compute observational parameters, we take
F (φ) = 1 + ξφ2.

2.1 Calculating the inflationary parameters

The difference between Metric and Palatini formulations are more easily figured out in the
Einstein frame by applying a Weyl rescaling gE,µν = gµν/F (φ) and thus Einstein frame action
displaying in that form

SE =

∫
d4x
√
−gE

(
1

2
gµνE RE,µν(Γ)− 1

2Z(φ)
gµνE ∂µφ∂νφ−

VE(φ)

F (φ)2

)
, (2.5)

where
Z−1(φ) =

1

F (φ)
, (2.6)

in the Palatini formulation. If we make a field redefinition

dχ =
dφ√
Z(φ)

, (2.7)

we obtain the action for a minimally coupled scalar field χ with a canonical kinetic term.
Using eq. (2.7), Einstein frame action in terms of χ is given that form

SE =

∫
d4x
√
−gE

(
1

2
gµνE RE(Γ)− 1

2
gµνE ∂µχ∂νχ− VE(χ)

)
. (2.8)

For F (φ) = 1 + ξ(φ2 − v2), eq. (2.6) can be defined with different limit cases:
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1. Electroweak regime
If |ξ(φ2 − v2)| � 1, φ ≈ χ and VJ(φ) ≈ VE(χ). Thus, the inflationary predictions are
approximately the same as for minimal coupling case.

2. Induced gravity limit [34]
In this limit (ξv2 = 1, F (φ) = ξφ2), Z(φ) = ξφ2 and using eq. (2.7), we obtain

φ = v exp
(
χ
√
ξ
)
, (2.9)

here we took χ(v) = 0.

3. Large-field limit
If φ2 � v2 during inflation, we have

φ ' 1√
ξ

sinh
(
χ
√
ξ
)
, (2.10)

in the Palatini formulation. Using eq. (2.10), inflationary potential can be taken into
account in terms of canonical scalar field χ, therefore slow-roll parameters are written
for Palatini formulation in the large-field limit according to χ.

On the condition that Einstein frame potential is written in terms of the canonical scalar
field χ, inflationary parameters can be found using the slow-roll parameters [35]

ε =
1

2

(
Vχ
V

)2

, η =
Vχχ
V

, ξ2 =
VχVχχχ
V 2

, (2.11)

where χ’s in the subscript represent derivatives. Inflationary parameters can be defined in
the slow-roll approximation by

ns = 1− 6ε+ 2η , r = 16ε, α =
dns

d ln k
= 16εη − 24ε2 − 2ξ2 . (2.12)

In the slow-roll approximation, the number of e-folds is obtained by

N∗ =

∫ χ∗

χe

V dχ

Vχ
, (2.13)

where the subscript “∗” indicates quantities when the scale corresponding to k∗ exited the
horizon, and χe is the inflaton value at the end of inflation, which we obtain by ε(χe) = 1.

The amplitude of the curvature perturbation in terms of canonical scalar field χ is written
the form

∆R =
1

2
√

3π

V 3/2

|Vχ|
. (2.14)

Furthermore, we redefine slow-roll parameters in terms of scalar field φ for numerical
calculations because for all general ξ and v values, it is not possible to compute the inflationary
potential in terms of the χ. Using with eqs. (2.7) and (2.11) together, slow-roll parameters
can be found in terms of φ [36]

ε = Zεφ , η = Zηφ + sgn(V ′)Z ′
√
εφ
2
, ξ2 = Z

(
Zξ2φ + 3sgn(V ′)Z ′ηφ

√
εφ
2

+ Z ′′εφ

)
.

(2.15)
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where we described

εφ =
1

2

(
V ′

V

)2

, ηφ =
V ′′

V
, ξ2φ =

V ′V ′′′

V 2
. (2.16)

In addition to this, eqs. (2.13) and (2.14) can be obtained in terms of φ in that form

N∗ = sgn(V′)

∫ φ∗

φe

dφ

Z(φ)
√

2εφ
, (2.17)

∆R =
1

2
√

3π

V 3/2

√
Z|V ′|

. (2.18)

To compute the values of inflationary parameters, we should obtain a value of N∗ nu-
merically. Supposing that a standard thermal history after inflation, N∗ is given as follows
[37]

N∗ ≈ 64.7 +
1

2
ln

ρ∗
m4
P

− 1

3(1 + ωr)
ln

ρe
m4
P

+

(
1

3(1 + ωr)
− 1

4

)
ln

ρr
m4
P

. (2.19)

Here ρe = (3/2)V (φe) is the energy density at the end of inflation, ρ∗ ≈ V (φ∗) is the energy
density when the scale corresponding to k∗ exited the horizon. ρr is the energy density at
the end of reheating and ωr is the equation of state parameter throughout reheating, which
we take its value to be constant. Inflationary parameters predictions change depending on
the total number of e-folds. In literature, most of papers take between N∗ ≈ 50 − 60 to be
constant calculating to the inflationary parameters in general. On the other hand, to be able
to discriminate inflationary models from each other, their predictions should know accurately.
Therefore, to indicate an acceptable range of N∗ depending upon reheating temperature, we
take into account three different scenario to define N∗:

1. High-N scenario
ωr = 1/3, this case corresponds to assuming instant reheating.

2. Middle-N scenario
ωr = 0 and the temperature of reheating is taken Tr = 109 GeV, computing ρr using the
SM value for the usual number of relativistic degrees of freedom values for g∗ = 106.75.

3. Low-N scenario
ωr = 0 same as middle-N scenario but in this case, the reheat temperature Tr = 100
GeV.

The ns− r curve for different scenarios are displayed in figure 1 for the Higgs potential in the
Palatini formulation (debated in section 4) together with the 68% and 95% confidence level
(CL) contours based on data taken by the Keck Array/BICEP2 and Planck collaborations [10].
The figure illustrates that for the Higgs potential in the Palatini formalism, the confidential
N∗ values of 50 and 60 which are taken necessarily agreement with the range expected from a
standard thermal history afterwards inflation. However, N∗ is smaller (for example between
roughly 45-55 providing that v ∼ 0.01) for the hilltop inflation models (described in section
5) because inflation takes place at a lower energy scale in these models.
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Higgs potential: ϕ>v
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High-N
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Low-N

Figure 1. The figure illustrates that ns-r predictions for different ξ values and v = 0.01 for various
reheating cases as described in the text for Higgs potential in the Palatini formalism. The points on
each curve represent to ξ = 10−2.5, 10−2, 10−1.5, 10−1, and 1, top to bottom. The pink (red) contour
corresponds to the 95% (68%) CL contours based on data taken by the Keck Array/BICEP2 and
Planck collaborations [10].

3 Quadratic potential

The quadratic inflation potential model in Jordan frame is given by in that form

VJ(φ) =
1

2
m2φ2, (3.1)

herem is a mass term and Einstein frame quadratic potential in the large-field limit (described
in section 2) for Palatini approach in terms of χ using eq. (2.10) can be obtained as follows

VE(χ) ≈ m2

2ξ

sinh2
(
χ
√
ξ
)(

1 + sinh2
(
χ
√
ξ
))2 . (3.2)

As it can be seen from eq. (3.2), if expanding this potential around the minimum for large ξ
values, we can obtain flattening potential. In literature, ref. [22] analyzed values of ns, r and
m for quadratic potential in Palatini gravity taking N∗ = 50 and N∗ = 60 to be constant. In
this work, we analyze ns, r, α and m values as function of ξ for Palatini quadratic potential
with large-field limit numerically for high-N scenario and low-N scenario. According to our
results from fig. 2, we find that if the non-minimal coupling parameter between the range
10−4 . ξ . 10−3 for high-N scenario, values of ns can be inside observational region but in
the case of larger ξ, ns values decrease and they remain outside the observational region as
well as range between 10−4 . ξ . 10−2, we obtain 0.01 . r . 0.12.

On the other hand, for low-N scenario (see fig. 4), values of ns are outside the observa-
tional region for any ξ values and for between 10−4 . ξ . 10−2, we find 0.01 . r . 0.14 and
also recent discussions about small ξ values on same scenarios such refs. [38, 39]. Further-
more, we show that α values are very small in Palatini quadratic potential for two different
scenario to be able to observe near future experiments, as it can be seen from figs. 3 and 5
as well as in the observational region, value of m for high-N scenario approximately equals
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to 6 × 10−6 (see fig. 3) which may explain the reason why the SM Higgs (mH = 125 GeV)
can not behave as an inflaton with quadratic potential.
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Figure 2. For quadratic potential in the Palatini formalism for high-N scenario, top figures display
that ns, r values as functions of ξ and the bottom figure shows that ns− r predictions based on range
of the top figures ξ values. The pink (red) contour correspond to the 95% (68%) CL contour given
by the Keck Array/BICEP2 and Planck collaborations [10].
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Figure 3. For quadratic potential in the Palatini formalism for high-N scenario, the figures show
that m and α values as functions of ξ.
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Figure 4. For quadratic potential in the Palatini formalism for low-N scenario, top figures display
that ns, r values as functions of ξ and the bottom figure shows that ns− r predictions based on range
of the top figures ξ values. The pink (red) contour correspond to the 95% (68%) CL contour given
by the Keck Array/BICEP2 and Planck collaborations [10].
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Figure 5. For quadratic potential in the Palatini formalism for low-N scenario, the figures show that
m and α values as functions of ξ.
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4 Higgs potential

In this section, we take into account well-known symmetry-breaking type potential [40]

VJ(φ) = A

[
1−

(
φ

v

)2
]2

, (4.1)

which is namely as Higgs potential. This potential for the minimal coupling case was inves-
tigated in recent such papers, see [14, 41–44]. In this case, when inflation takes place around
the minimum, the potential is approximately quadratic and thus the quadratic potential
predictions in terms of N∗

ns ≈ 1− 2

N∗
, r ≈ 8

N∗
, α ≈ − 2

N2
∗
, (4.2)

can be obtained for inflation both φ > v and φ < v. In this work, instead of minimal
coupling case, we analyze Higgs inflation with non-minimal coupling in Palatini formulation
both high-N scenario and low-N scenario. Furthermore, using eq. (2.17), we obtain N∗ for
non-minimally coupled Palatini Higgs inflation analytically in that form

N∗ =
1

8

(
φ2∗ − φ2e

)
− v2

4
ln
φ∗
φe
. (4.3)

In the large-field limit (described as section 2), for Palatini Higgs inflation with non-minimal
coupling, ns, r and α can be found using eq. (2.7) together with eqs. (2.10), (2.12) and (2.13)
in terms of N∗

ns ≈ 1− 2

N∗
, r ≈ 2

ξN2
∗
, α ≈ − 2

N2
∗
. (4.4)

On the other hand, in the case of φ � v when cosmological scales exit the horizon, the
potential approximates to the hilltop potential type (described as section 5) effectively

VE(φ) ≈ A

[
1− 2

(
φ

v

)2
]
. (4.5)

Predictions of this potential type in eq. (4.5) for φ � v that r is very suppressed and
ns ≈ 1− 8/v2. In this section, we analyze numerically for φ > v and φ < v cases in the high-
N scenario and low-N scenario for Higgs potential with non-minimal coupling in the Palatini
approach with broad range of ξ and v. In literature, inflationary predictions of Palatini Higgs
inflation taken into account for different N∗ values, in general taken to be constant between
N∗ ≈ 50−60 [31, 32, 45–47]. For example, [31] analyzed preheating stage following at the end
of Palatini Higgs inflation taking N∗ ≈ 50. They showed that slow decaying oscillations of
Higgs afterwards the end of inflation permits the field to periodically return to the plateau of
the potential so the prehating stage in the Palatini Higgs inflation necessarily instantaneous.
Therefore, this decreases N∗ of inflation required to solve the problems of hot big bang.

First of all, we illustrate φ > v case for both two scenarios. As it can be seen in figures
6 and 7, ξ ≤ 0 cases are outside 95% CL contour given by Keck Array/BICEP2 and Planck
collaborations [10] at any v values. In addition to this, for small v values, inflationary pre-
dictions of ξ = 10−3 can be outside 95% CL contour. However, in larger v values, predictions
are inside 95% CL for ξ = 10−3. For ξ = 10−2, predictions are inside 68% CL for small v
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values but for larger values of v, predictions remain 95% CL contour. Furthermore, for ξ � 1
cases, predictions are inside 68% CL for small values of v and when v increases, they enter in
the 95% CL and r is very tiny for larger and smaller values of v, so r is highly suppressed at
any v values for larger ξ cases. For ξ = 10−2 and ξ = 10−3, also r is very small for large v
values but this case is not valid for smaller values of v. For both ξ < 0 and ξ = 0 cases, r does
not take very small values for larger and smaller v. In addition to this, as it can be seen that
from fig. 7, α takes very tiny values for selected ξ cases and at any v values to be observed
in the near future observations. Moreover, for all selected ξ values, when v increases, values
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Figure 6. For Higgs potential in the Palatini formalism in the cases of φ > v and high-N scenario, in
the top figures display changing ns and r values for different ξ cases as function of v and the bottom
figure shows that ns − r predictions for selected ξ values. The pink (red) contour correspond to the
95% (68%) CL contour given by the Keck Array/BICEP2 and Planck collaborations [10].

of A increase depending on v.
In addition to φ > v and high-N cases, figs. 8 and 9 show that for φ > v but low-N case

for Higgs potential in the Palatini formalism. According to fig. 8, predictions of ξ = 0 and
ξ < 0 cases are similar as φ > v and high-N scenario results. On the other hand, predictions
of another ξ values slightly different from high-N case. For ξ � 1 cases, predictions can be in
the 95% CL contour for small v values but when v increases, predictions remain inside 68%
CL. In the low-N case, values of r for all the selected ξ values overlap with high-N case so
again r is very small for ξ � 1 cases for both small and large v values and also for larger
values of v for ξ = 10−2 and ξ = 10−3 cases also r is very tiny except for small v values.
Furthermore, in the low-N case, values of α and A are similar as high-N case so α takes very
small values for our selected ξ cases and at any v values to be observed in the near future
measurements.
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Figure 7. For Higgs potential in the Palatini formalism, the change in α and A as a function of v is
plotted for different ξ values in the cases of φ > v and high-N scenario.
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Figure 8. For Higgs potential in the Palatini formalism in the cases of φ > v and low-N scenario, in
the top figures display changing ns and r values for different ξ cases as function of v and the bottom
figure shows that ns − r predictions for selected ξ values. The pink (red) contour correspond to the
95% (68%) CL contour given by the Keck Array/BICEP2 and Planck collaborations [10].

Numerical results for φ < v and high-N cases for Higgs potential in the Palatini approach
can be seen in figures 10 and 11, according to these figures, predictons of ξ = 10−3 are ruled
out for current data. In contrast, ξ = 10−4 and ξ = 0 cases can be inside 95% CL contour
given by the Keck Array/BICEP2 and Planck collaborations [10]. However, ξ < 0 cases for
the range between 10 . v . 20, predictions are outside 95% CL contour but when v increases,
they can be in the range of compatible with observational data depending on v. Unlike from
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Figure 9. For Higgs potential in the Palatini formalism, the change in α and A as a function of v is
plotted for different ξ values in the cases of φ > v and low-N scenario.

φ > v and high-N scenario, here values of r are very small for ξ = −10 and ξ = −102 cases.
In addition to this, α values are very small similar to other situations. Lastly, for ξ 6 0 cases,
values of A increase depending on v, but this case is different for ξ = 10−3 and ξ = 10−4

values, as it can be seen in fig. 11.
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Figure 10. For Higgs potential in the Palatini formalism in the cases of φ < v and high-N scenario,
in the top figures display changing ns and r values for different ξ cases as function of v. The bottom
figures show that ns − r predictions for selected ξ values, left panel: ξ > 0 and ξ = 0 cases, right
panel: ξ < 0 cases. The pink (red) contour correspond to the 95% (68%) CL contour given by the
Keck Array/BICEP2 and Planck collaborations [10].

Furthermore, we also obtain numerical results in the cases of φ < v and low-N scenario
for Higgs potential in figures 12 and 13. According to these figures, inflationary predictions of
ξ ≥ 0 cases are ruled out for current data. In addition to this, the cases of ξ < 0, predictions
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Figure 11. For Higgs potential in the Palatini formalism, the change in α and A as a function of v
is plotted for different ξ values in the cases of φ < v and high-N scenario.

begin to enter observational region, when v increases. For larger v values, predictions remain
68% CL contour, as well as values of r are strongly suppressed for cases of both ξ = −10 and
ξ = −102. According to fig. 13, results for the α and A are the same as φ < v and high-N
scenario. We also display inflationary parameters of Higgs potential in the limit of induced
gravity, described as in the text (see section 2) for high-N scenario in fig. 14. According to
this figure, for all our selected ξ values are in the 68% CL contour. What is more, in this
limit case, α values are also very tiny at any v and values of A increase, depending upon v.
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Figure 12. For Higgs potential in the Palatini formalism in the cases of φ < v and low-N scenario,
in the top figures display changing ns and r values for different ξ cases as function of v. The bottom
figures show that ns − r predictions for selected ξ values, left panel: ξ > 0 and ξ = 0 cases, right
panel: ξ < 0 cases. The pink (red) contour correspond to the 95% (68%) CL contour given by the
Keck Array/BICEP2 and Planck collaborations [10].
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Figure 13. For Higgs potential in the Palatini formalism, the change in α and A as a function of v
is plotted for different ξ values in the cases of φ < v and low-N scenario.
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Figure 14. For Higgs potential in the Palatini formalism, the change in ns, r, α and A as a function
of v is plotted for different ξ values and for φ > v in the induced gravity limit which corresponds to
ξv2 = 1.

In the induced gravity limit, using eq. (2.9), the Einstein frame potential can be obtained
in terms of χ in that form

VE(χ) =
A

ξ2v4

(
1− 2 exp

(
−2
√
ξχ
))

. (4.6)

For this potential, using eq. (2.13), 8ξN ≈ exp
(
2
√
ξχ
)
. Therefore, using eq. (2.12) we

can find ns and r approximately in the induced gravity limit

ns ≈ 1− 2

N∗
− 3

4ξN2
∗
, r ≈ 2

ξN2
∗
. (4.7)
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The Higgs potential in the induced gravity limit was previously investigated for the Metric
formulation in [48–50]. In this work, we extend these papers with analyzing Higgs potential
in the induced gravity limit in the Palatini formulation for φ > v and high-N scenario. To
sum up, in literature, Higgs inflation with non-minimal coupling has been discussed such refs.
[33, 36, 48–51] in the Metric formulation. Refs. [36] and (for just ξ > 0) [51] analyzed the
Higgs inflation with non-minimal coupling in the Metric formulation in general for taking
F (φ) = 1 + ξφ2. Moreover, [33] explained the Higgs inflation with non-minimal coupling
in the Metric formulation for both ξ > 0 and ξ < 0 cases for F (φ) = 1 + ξ(φ2 − v2). On
the other hand, some papers take into account non-minimally coupled Higgs inflation in the
Palatini formulation [20, 23, 30, 31] which we mentioned before. Ref. [20] examined for
large-field limit taking F (φ) = 1 + ξφ2 and they found ns ' 0.968 ad r ' 10−14 in the
Palatini approach. Moreover, [23] again taking F (φ) = 1 + ξφ2, they found predictions of
various inflationary parameters in Palatini approach, they obtained that r values are highly
suppressed for ξφ2 � 1 limits and also they found very small α values to be observed in
the future measurements. Similar to the other papers, [31] analyzed Palatini Higgs inflation
taking F (φ) = 1 + ξφ2. Different from previous papers, we analyze inflationary parameters of
Palatini Higgs inflation with non-minimal coupling for taking F (φ) = m2+ξφ2 = 1+ξ(φ2−v2).
Furthermore, we display our numerical calculations using both high-N scenario and low-N
scenario.

5 Hilltop potentials

In this section, we take into account another symmetry-breaking type potential models which
also take place in some supersymmetric inflation models, i.e. [52–54] in the case of the inflaton
value is φ < v throughout inflation. These potential types are described with generalization
of the Higgs potential in that form

VJ(φ) = A

[
1−

(
φ

v

)µ]2
, (µ > 2) . (5.1)

In the electroweak regime which explained as section 2, we have φ ≈ χ and also χ� v during
inflation, and the Einstein frame potential can be obtained as in terms of canonical scalar
field

VE(χ) ≈ A
[
1−

(χ
τ

)µ
− 2ξχ2

]
, (5.2)

where we have defined τ = v/21/µ. In the literature, hilltop potentials with minimal coupling
case (ξ = 0) has been investigated such refs. [14, 35]. Furthermore, by taking consideration
(2.11), (2.12) and (2.13), we find

ns ≈ 1− (µ− 1)2

(µ− 2)N∗
, r ≈ 128

(
16τ2µ

µ2[4µ− 2)N∗]2µ−2

) 1
µ−2

, (5.3)

which illustrates that r is strongly suppressed and ns takes to be smaller values than the range
agreement with observational results. On the other hand, in this work we calculate inflationary
parameters for hilltop potentials with non-minimal coupling in Palatini formulation both high-
N scenario and low-N scenario numerically. In these calculations are shown in figures 15, 16,
17 and 18. Furthermore, for potential in eq. (5.2), ns and r can be obtained in that form

ns ≈ 1 +
8(µ− 1)ξ

1− e4(µ−2)ξN∗
− 8ξ , r ≈ 128ξ2τ2(4ξτ2/µ)2/(µ−2)e8(µ−2)ξN∗(

e4(µ−2)ξN∗ − 1
)2(µ−1)/(µ−2) . (5.4)
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These predictions are compatible with the our numerical results for ns−r that were computed
using the Jordan frame potential described by eq. (5.1) which is shown top figures in the
fig. 15 and fig. 17 for two different scenarios. As it can be seen that figures 15, 16, 17 and
18 in general, on the condition that ξ, v � 1 and τ = 0.01, observational parameters can be
inside observational region except for µ = 4 since predictions are ruled out for any ξ values
in the case of µ = 4 for both two scenarios which we take into account. In addition to this,
as the ξ values increase, observational parameters are ruled out for any ξ values in the cases
of µ = 6, 8, 10 different from smaller ξ values as well as r values are highly suppressed and
also values of α are very tiny to be observed in the near future measurements for all selected
µ values.
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Figure 15. For hilltop potentials in the Palatini formalism, top figures display that ns, r values as
functions of ξ for τ = 0.01 and different µ values in the cases of φ < v and high-N scenario. The
bottom figure displays ns − r predictions based on range of the top figures ξ values for τ = 0.01.
The pink (red) line corresponds to the 95% (68%) CL contour given by the Keck Array/BICEP2 and
Planck collaborations [10].
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Figure 16. For hilltop potentials in the Palatini formalism, the figure shows that α values as functions
of ξ for τ = 0.01 and different µ values in the cases of φ < v and high-N scenario.
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Figure 17. For hilltop potentials in the Palatini formalism, top figures display that ns, r values as
functions of ξ for τ = 0.01 and different µ values in the cases of φ < v and low-N scenario. The
bottom figure displays ns − r predictions based on range of the top figures ξ values for τ = 0.01.
The pink (red) line corresponds to the 95% (68%) CL contour given by the Keck Array/BICEP2 and
Planck collaborations [10].
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Figure 18. For hilltop potentials in the Palatini formalism, the figure shows that α values as functions
of ξ for τ = 0.01 and different µ values in the cases of φ < v and low-N scenario.

6 Conclusion

In this work, we briefly expressed Palatini inflation with a non-minimal coupling in section
2 and then we displayed our results to the inflationary predictions of non-minimally coupled
Palatini quadratic potential in the large-field limit for high-N scenario and low-N scenario
in section 3 for F (φ) = 1 + ξφ2. Next, we analyzed predictions of Higgs potential for φ > v
and φ < v in section 4 and hilltop potentials for φ < v in section 5 with non-minimal
coupling in the Palatini formulation taking F (φ) = 1 + ξ(φ2 − v2) for both two N scenarios.
Furthermore, in section 4, we also investigated Higgs potential in the induced gravity limit
for high-N scenario.

We illustrated that for the Palatini quadratic potential with non-minimal coupling, just
a small ξ values fit the current measurements given by the Keck Array/BICEP2 and Planck
collaborations [10] for high-N case. On the other hand, for low-N case, we found that
predictions are outside to the observational region for any ξ values. According to the our
results, r has very tiny values in the ξ � 1 cases where the inflaton value φ > v for Higgs
potential for high-N scenario and low-N scenario. Therefore, we obtained the significant
Starobinsky attractor behaviour for larger ξ values in the Metric formulation is disappear
in the Palatini formulation for these ξ cases where the inflaton value φ > v for both two
scenarios. In addition to this, for ξ = 10−2 and ξ = 10−3, r has very tiny values solely
larger v. However, in the case of φ < v and for also both two scenarios, r values are highly
suppressed for ξ = −10 and ξ = −102.

We also analyzed Palatini Higgs inflation in the induced gravity limit for high-N scenario
and we found that for ξ ≥ 1 cases, r takes small values. Furthermore, we calculated the
inflationary predictions of hilltop potentials numerically in the case of the inflaton value
φ < v and ξ, v � 1 for high-N scenario and low-N scenario. In these type of potentials,
inflationary parameters can be compatible with approximately ξ . 0.005 values just in the
cases of φ < v and v � 1. We also obtained that r values are highly suppressed in the hilltop
potentials for both two scenarios.

Finally, we obtained that the predict of α is too small to be observed in future measure-
ments for all our examined potentials but we consider that future experimental can be much
enhanced values of α, in particular near future observations of the 21 cm line [7–9].
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